Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts.
نویسندگان
چکیده
Chronic kidney disease (CKD) is accompanied by cardiac fibrosis, hypertrophy, and dysfunction, which are commonly referred to as uremic cardiomyopathy. Our previous studies found that Na/K-ATPase ligands or 5/6th partial nephrectomy (PNx) induces cardiac fibrosis in rats and mice. The current study used in vitro and in vivo models to explore novel roles for microRNA in this mechanism of cardiac fibrosis formation. To accomplish this, we performed microRNA profiling with RT-qPCR based arrays on cardiac tissue from rats subjected to marinobufagenin (MBG) infusion or PNx. The analysis showed that a series of fibrosis-related microRNAs were dysregulated. Among the dysregulated microRNAs, microRNA (miR)-29b-3p, which directly targets mRNA of collagen, was consistently reduced in both PNx and MBG-infused animals. In vitro experiments demonstrated that treatment of primary cultures of adult rat cardiac fibroblasts with Na/K-ATPase ligands induced significant increases in the fibrosis marker, collagen protein, and mRNA expression compared with controls, whereas miR-29b-3p expression decreased >50%. Transfection of miR-29b-3p mimics into cardiac fibroblasts inhibited cardiotonic steroids-induced collagen synthesis. Moreover, a specific Na/K-ATPase signaling antagonist, pNaKtide, prevented ouabain-induced increases in collagen synthesis and decreases in miR-29b-3p expression in these cells. In conclusion, these data are the first to indicate that signaling through Na/K-ATPase regulates miRNAs and specifically, miR-29b-3p expression both in vivo and in vitro. Additionally, these data indicate that miR-29b-3p expression plays an important role in the formation of cardiac fibrosis in CKD.
منابع مشابه
Na / K - ATPase Signaling Regulates Collagen Synthesis Through microRNA - 29 b - 3 p in Cardiac 1 Fibroblasts
3 Christopher A. Drummond1, Michael C. Hill1, Huilin Shi1, Xiaoming Fan1, Jeffrey X. Xie1, 4 Steven T. Haller1, David J. Kennedy1, Jiang Liu2, Michael R. Garrett3, Zijian Xie4, 5 Christopher J. Cooper1, Joseph I. Shapiro2, and Jiang Tian1,¥ 6 7 From the Department of Medicine, Division of Cardiovascular Medicine; Center for 8 Hypertension and Personalized Medicine, College of Medicine, Universi...
متن کاملmiR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway
Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...
متن کاملMolecular Strategy to Reduce In Vivo Collagen Barrier Promotes Entry of NCX1 Positive Inducible Pluripotent Stem Cells (iPSCNCX1+) into Ischemic (or Injured) Myocardium
OBJECTIVE The purpose of this study was to assess the effect of collagen composition on engraftment of progenitor cells within infarcted myocardium. BACKGROUND We previously reported that intramyocardial penetration of stem/progenitor cells in epicardial patches was enhanced when collagen was reduced in hearts overexpressing adenylyl cyclase-6 (AC6). In this study we hypothesized an alternati...
متن کاملRegulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms
Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic an...
متن کاملCarbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis
Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-media...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2016